Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Jun Tao, ${ }^{a}$ Xin Yin, ${ }^{\text {a }}$ Rong-Bin
Huang, ${ }^{a}$ Lan-Sun Zheng ${ }^{a}$ and Seik Weng $\mathbf{N g}^{\mathbf{b}}$ *

${ }^{\text {a }}$ Department of Chemistry, Xiamen University, Xiamen 361005, People's Republic of China, and ${ }^{\text {b }}$ Department of Chemistry, University of
Malaya, 50603 Kuala Lumpur, Malaysia
Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.025$
$w R$ factor $=0.056$
Data-to-parameter ratio $=15.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

Poly[[aqua(1-aza-4-azoniabicyclo[2.2.2]octane)-cadmate(II)]- μ-5-sulfatoisophthalato]

In the title compound, $\left[\mathrm{Cd}\left(\mathrm{C}_{8} \mathrm{H}_{3} \mathrm{O}_{7} \mathrm{~S}\right)\left(\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{~N}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{n}$, the Cd atom is coordinated by one O atom of a carboxylate group of a 5-sulfatoisophthalato ligand, two O atoms of the carboxylate group group of an adjacent symmetry-related 5sulfoisophthalato entity, one O atom of the sulfonyl group of yet another adjacent 5 -sulfatooisophthalato entity, a water molecule and the N atom of the 1-aza-4-azoniabicyclo[2.2.2]octane cation in a six-coordinate octahedral geometry. Thus, the mode of coordination of the 5 -sulfatoisophthalato ligand leads to the formation of a linear ribbon motif; adjacent ribbons are linked by hydrogen-bonding interactions, giving rise to a three-dimensional network structure.

Comment

The 5-sulfatoisophthalato monoanion, $\left[\mathrm{C}_{6} \mathrm{H}_{3}-1,3-\left(\mathrm{CO}_{2} \mathrm{H}\right)_{2}-5-\right.$ $\left.\mathrm{SO}_{3}\right]^{-}$, reacts with copper nitrate in the presence of hexamethylenetetramine to form $\left[\mathrm{C}_{6} \mathrm{H}_{3}-1,3-\left(\mathrm{CO}_{2}\right)_{2}-5-\mathrm{SO}_{3} \mathrm{H}\right]$ $\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \mathrm{Cu} \cdot 6 \mathrm{H}_{2} \mathrm{O} \cdot 0.5\left(\mathrm{CH}_{2}\right)_{6} \mathrm{~N}_{4}$ (Sun et al., 2003) In the crystal structure, the $\left[\mathrm{C}_{6} \mathrm{H}_{3}-1,3-\left(\mathrm{CO}_{2}\right)_{2}-5-\mathrm{SO}_{3} \mathrm{H}\right]^{2-}$ dianion links adjacent Cu atoms through both monodentate $-\mathrm{CO}_{2}$ groups into a linear chain, and adjacent chains are linked by hydrogen bonds to the water and hexamethylenetetramine molecules into a network motif. The piperazine guest-host analog, $\left[\mathrm{C}_{6} \mathrm{H}_{3}-\right.$ $\left.1,3-\left(\mathrm{CO}_{2}\right)_{2}-5-\mathrm{SO}_{3} \mathrm{H}\right]\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{Cu} \cdot 6 \mathrm{H}_{2} \mathrm{O} \cdot 0.5 \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{~N}$, follows a similar pattern (Sun et al., 2003). The other known metal complex of 5 -sulfatoisophthalic acid is also a copper derivative, $\left[\mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{CO}_{2}\right)_{2}\left(\mathrm{SO}_{3}\right)\right]_{2} \mathrm{Cu}_{3}$, whose Cu atoms are coordinated by pyridine ligands (Kulynych \& Shimizu, 2002).

(I)

We have employed the anion to react with Cd^{2+} in the presence of 1,4-diazabicyclo[2.2.2]octane in the hope of synthesizing a similar guest-host hydrate, viz $\left[\mathrm{C}_{6} \mathrm{H}_{3}-1,3-\right.$ $\left.\left(\mathrm{CO}_{2}\right)_{2}-5-\mathrm{SO}_{3} \mathrm{H}\right] \mathrm{Cd}-\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{3} \mathrm{~N} \cdot n \mathrm{H}_{2} \mathrm{O}$, (I), using a hydrothermal synthetic procedure. However, in the watercoordinated product, the H atom of the sulfonate group has protonated one of the N atoms of the 1,4-diazabicyclo[2.2.2]octane; the resulting 1 -aza-4-azoniabicyclo[2.2.2]octane cation then uses its free N atom to coordinate to the Cd atom, and a zwitterionic compound results (Fig. 1).

The $\left[\mathrm{C}_{6} \mathrm{H}_{3}-1,3-\left(\mathrm{CO}_{2}\right)_{2}-5-\mathrm{SO}_{3}\right]^{3-}$ trianion uses both $-\mathrm{CO}_{2}$ groups to link to adjacent Cd atoms to form a chain, but one of

Received 14 May 2003 Accepted 13 June 2003 Online 24 June 2003

Figure 1
ORTEPII (Johnson, 1976) plot of a segment of the structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. [Symmetry codes: (i) ? $x-\frac{1}{2}, \frac{1}{2}-y, \frac{1}{2}+z ;$ (ii) $\frac{3}{2}-x, \frac{1}{2}-y, 1-z$.

Figure 2
ORTEPII (Johnson, 1976) plot of the ribbon structure.
them is monodentate $[\mathrm{Cd}-\mathrm{O}=2.190(2) \AA$] whereas the other is chelating $[\mathrm{Cd}-\mathrm{O}=2.331$ (2) and 2.399 (2) \AA]. Two chains are then linked by a sulfonate bridge $[\mathrm{Cd}-\mathrm{O}=$ 2.349 (2) Å] to furnish a ribbon motif (Fig. 2). The ribbons are further linked by hydrogen-bonding interactions (Table 2) to give rise to a three-dimensional network structure. Protonation of one of the two N atoms of the 1,4-diazabicyclo[2.2.2] octane probably raises the Lewis basicity of the other N atom to permit it to bind to $\mathrm{Cd}[\mathrm{Cd} 1-\mathrm{N} 1=$ 2.437 (2) \AA] ; a $\mathrm{Cd} \leftarrow \mathrm{N}$ interaction of a similar length $[\mathrm{Cd} \leftarrow \mathrm{N}$ $2.446(3) \AA]$ is also found in $\left\{\left[\mathrm{NH}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right) \mathrm{N}\right]_{2} \mathrm{Cd}\right\}$ $\left\{\mathrm{Ni}(\mathrm{CN})_{4}\right\}_{2} \cdot 4 \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$ (Yuge \& Iwamoto, 1995).

Experimental

A $1 / 1$ water-ethanol solution $(8 \mathrm{ml})$ of cadmium nitrate tetrahydrate ($0.15 \mathrm{~g}, 0.5 \mathrm{mmol}$), the monosodium salt of 5 -sulfatoisophthalic acid
($0.13 \mathrm{~g}, 0.5 \mathrm{mmol}$) and diazabicyclo[2.2.2]octane ($0.22 \mathrm{~g}, 2.0 \mathrm{mmol}$) was placed in a 23 ml Teflon-lined stainless steel vessel. The vessel was sealed and then heated at 433 K for 60 h , after which it was allowed to cool to room temperature. The crystals that deposited from the solution were collected and washed with water. CHN analysis for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{CdN}_{2} \mathrm{O}_{8} \mathrm{~S}$: found C 34.22, H 3.79, N 6.02%; calculated C 34.54, H 3.73 , N 5.75%. IR: 2983 (m), $2882(w), 2808(w)$, 2659 (m), 1683 (w), 1598 (s), 1555 (s), 1465 (m), 1434 (s), 1360 (s), $1240(s), 1170(s), 1092(m), 1037(s), 924(w), 839(m), 800(m), 776$ (s), $730(s), 671(m), 621(s), 578(m), 519(w), 461(w), 449(w) \mathrm{cm}^{-1}$.

Crystal data

$\left[\mathrm{Cd}\left(\mathrm{C}_{8} \mathrm{H}_{3} \mathrm{O}_{7} \mathrm{~S}\right)\left(\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{~N}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$
$M_{r}=486.76$
Monoclinic, $C 2 / c$
$a=18.5885$ (8) \AA
$b=8.8265$ (4) \AA
$c=21.7607(9) \AA$
$\beta=113.408(1)^{\circ}$ 。
$V=3276.5(2) \AA^{3}$
$Z=8$
$D_{x}=1.974 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 6969

reflections

$\theta=2.0-28.2^{\circ}$
$\mu=1.51 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Block, colorless
$0.40 \times 0.08 \times 0.04 \mathrm{~mm}$

Data collection

Bruker AXS area-detector diffractometer

3750 independent reflections
3207 reflections with $I>2 \sigma(I)$
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.689, T_{\text {max }}=0.941$
$R_{\text {int }}$
$\theta_{\text {max }}=28.2^{\circ}$
$h=-24 \rightarrow 24$
$k=-11 \rightarrow 11$
9529 measured reflections
$l=-19 \rightarrow 28$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.025$
H atoms treated by a mixture of independent and constrained
$w R\left(F^{2}\right)=0.056$ refinement
$S=0.93$
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0278 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.63 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.42 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\left(\AA{ }^{\circ}\right)$.

$\mathrm{Cd} 1-\mathrm{O} 1$	$2.190(2)$	$\mathrm{Cd} 1-\mathrm{O} 6^{\mathrm{ii}}$	$2.349(2)$
$\mathrm{Cd} 1-\mathrm{O} 3^{\mathrm{i}}$	$2.331(2)$	$\mathrm{Cd} 1-\mathrm{O} 1 w$	$2.241(2)$
$\mathrm{Cd} 1-\mathrm{O}^{\mathrm{i}}$			$2.437(2)$
$\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{O}^{\mathrm{i}}$			
$\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{O} 4^{\mathrm{i}}$	$145.5(1)$	$\mathrm{O}^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{N} 1$	$87.4(1)$
$\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{O} 6^{\mathrm{ii}}$	$91.0(1)$	$\mathrm{O}^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{O} 6^{\mathrm{ii}}$	$90.5(1)$
$\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{O} 1 w$	$99.3(1)$	$\mathrm{O}^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{O} 1 w$	$150.8(1)$
$\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{N} 1$	$118.1(1$	$\mathrm{O}^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{N} 1$	$94.6(1)$
$\mathrm{O}^{\mathrm{i}}-\mathrm{Cd} 1-4^{\mathrm{i}}$	$88.3(1)$	$\mathrm{O}^{\mathrm{ii}}-\mathrm{Cd} 1-\mathrm{O} 1 w$	$87.7(1)$
$\mathrm{O}^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{O} 6^{\mathrm{ii}}$	$55.3(1)$	$\mathrm{O}^{\mathrm{ii}}-\mathrm{Cd} 1-\mathrm{N} 1$	$170.8(1)$
$\mathrm{O}^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{O} 1 w$	$89.2(1)$	$\mathrm{O} 1 w-\mathrm{Cd} 1-\mathrm{N} 1$	$84.1(1)$

Symmetry codes: (i) ?? $x-\frac{1}{2}, \frac{1}{2}+y, z ?$? (ii) $\frac{3}{2}-x, \frac{1}{2}-y, 1-z$.

Table 2
Hydrogen-bonding geometry ($\AA{ }^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 w-\mathrm{H} 1 w 1 \cdots \mathrm{O}^{\text {iv }}$	$0.85(1)$	$1.91(2)$	$2.700(3)$	$155(3)$
$\mathrm{O}^{\mathrm{iv}} w-\mathrm{H} 1 w 2 \cdots \mathrm{O}^{\mathrm{v}}$	$0.85(1)$	$1.88(1)$	$2.714(2)$	$165(3)$
$\mathrm{N} 2-\mathrm{H} 2 n \cdots \mathrm{O}^{\text {vi }}$	$0.86(1)$	$1.91(1)$	$2.736(3)$	$161(3)$

Symmetry codes: (iv) $x-\frac{1}{2}, \frac{1}{2}-y, z-\frac{1}{2}$; (v) $\frac{3}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z ;$ (vi) $x, 1+y, z$.

The water and ammonium H atoms were located and refined subject to constraints of $\mathrm{O}-\mathrm{H}=\mathrm{N}-\mathrm{H}=0.85$ (1) and $\mathrm{H} \cdots \mathrm{H}=$ 1.39 (1) \AA. The C-bound H atoms were generated geometrically ($\mathrm{C}-$ $\mathrm{H}=0.95 \AA$ for the aromatic H atoms and $0.97 \AA$ for the aliphatic H atoms) and were included in the refinement in the riding-model approximation; their displacement parameters were set at 1.2 times $U_{\text {eq }}$ of the equivalent isotropic displacement parameters of the parent C atoms.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

The authors thank the National Science Foundation of China (No. 20023001), the Innovation Foundation for Young Scientific Talents of Fujian Province, China (No. 2002-J004), Xiamen University (No. Y07015) and the University of Malaya for supporting this work.

References

Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Kulynych, A. D. \& Shimizu, G. H. (2002). Cryst. Eng. Commun. 4, 102-105.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sun, D., Cao, R., Sun, Y., Li, X., Hong, M. \& Zhao, Y. (2003). Eur. J. Inorg. Chem. pp. 94-98.
Yuge, H. \& Iwamoto, T. (1995). Acta Cryst. C51, 374-377.

